Variable Temperature Circular Dichroism of Tricarbonyl(1,3-diene)iron Complexes

CHARLES BARRAS, RAYMOND ROULET*

Institute of Inorganic and Analytical Chemistry, University of Lausanne, Place du Château 3, CH-1005 Lausanne, Switzerland

and PIERRE VOGEL*

Institute of Organic Chemistry, University of Lausanne, Rue de la Barre 2, CH-1005 Lausanne, Switzerland

Received September 14, 1983

In the crystalline state, X-ray crystallographic analysis of tricarbonyl(1,3-diene)iron complexes has established that the coordination polyhedron of the iron atom is tetragonal pyramidal with one apical CO; the diene is perpendicular to the basal plane with three statistically equal C-C distances and two equal Fe-C(terminal) distances [1]. Hence, the two valence bond representations I-I' have been widely used to describe the iron-diene interaction [2].

$$\begin{bmatrix} Fe(CO)_3 & \longleftrightarrow & \bigcirc Fe(CO)_3 \\ I & I^i \end{bmatrix}$$

Recently, several arguments have been advanced [3] for a representation II \neq III (hypothesis A) involving an equilibrium between a pair of rapidly interconverting enantiomers having a σ -alkyl, η^3 -allyl bonding mode. An alternative, hypothesis B, which also involves two rapidly interconverting enantiomeric structures would be an equilibrium between species IV \neq V (possibly via a C_a symmetrical transition state).

^{*}Authors to whom correspondence should be addressed.

In principle, unequal Fe--C(diene) distances are expected in C_1 species II-V. Unequal Ni-C(terminal) distances have recently been observed in the crystal structure of a (1,3-diene)nickel complex [4], whereas in comparable iron complexes such asymmetrical bonding of the diene ligand has not yet been detected in the solid state [1, 2]. However, in the gas phase or in solution, hypotheses A or B have not yet been ruled out for (1,3-diene)Fe(CO)₃ complexes. In order to test the validity of these hypotheses which, at the limit, could be two different representations of the same equilibrium, we prepared optically pure complexes (-)-X, (+)-X, (-)-XII, (-)-XIII and (+)-XIV (Scheme 1). As the 2-substi-5,6-dimethylidenebicyclo[2.2.1] heptane tuted ligand in these complexes is itself chiral, the hypothetical equilibria II \neq III or IV \neq V would involve pairs of diastereoisomers (e.g. $VI \neq VII$). The equilib-

rium constants, K, for these equilibria should therefore be different from unity and should vary with temperature. Since the hypothetical pairs of chromophores II \rightleftharpoons III or IV \rightleftharpoons V have opposite chirality, variable temperature circular dichroism should be a suitable method to detect the existence of such equilibria.

The choice of the bicyclo [2.2.1] heptane ligands was based on the following considerations: (i), the rigid bicyclic skeleton should minimize ligand conformational problems, (ii), isomeric complexes can be obtained (*exo* and *endo* metal coordination), and (*iii*), a remote substituent at C(2) is expected to cause only a minor perturbation of the (diene)-Fe(CO)₃ moiety. Consequently, the equilibrium constant K will remain *ca*. 1 which is a necessary condition to detect a change in K over the temperature range 77–300 K. (*iv*) The nature of the substituent can be varied widely. Hence, complexes that are soluble in both polar and unpolar solvents and give transparent glasses at 77 K can be obtained.

© Elsevier Sequoia/Printed in Switzerland

Fig. 1. Variable temperature CD spectra of (-)-tricarbonyl-([C,8,9,C- η]-2,3,5-trimethylidenebicyclo[2.2.1]heptane)iron(endo) (-)-XIII in isopentane/methylcyclohexane 3:1, and plot of $\Delta \epsilon_A(T) \nu s$. $\Delta \epsilon_B(T) (\lambda_A = 335; \lambda_B = 305 \text{ nm})$ in methanol/2-methyltetrahydrofurane 1:2 (1) and isopentane/methylcyclohexane 3:1 (2).

When treated with $Fe_2(CO)_9$ in methanol, the known (-)-(1S)-5,6-dimethylidene-2-bicyclo[2.2.1]-heptanone (-)-VIII [5] yielded a 2:1 mixture of the *exo* and *endo* complexes (-)-IX (44%) and (-)-X (22%), respectively.

Only the latter complex could be obtained in the pure state as a crystalline substance (m.p. 94–95 °C; $[\alpha]_{D}^{25} = -63.6^{\circ}$, c = 13 g/l, CHCl₃). Following Nozaki's technique [6] applied by Schwager [7] to the preparation of the racemic 2,3,5-trimethylidenebicyclo[2.2.1] heptane, the optically pure triene (-)-XI (colorless liquid; $[\alpha]_{D}^{25} = -63.9^{\circ}$, c = 49 g/l, CHCl₃) was obtained from (-)-VIII. When treated with Fe₂(CO)₉ in methanol, it gave a 2:1 mixture of complexes (-)-XII (18%; $[\alpha]_{D}^{25} = -45.6^{\circ}$, c = 11 g/l, CHCl₃) and (-)-XIII (8%; $[\alpha]_{D}^{25} = -45.6^{\circ}$,

-89.9°, c = 0.9 g/l, isopentane/methylcyclohexane 3:1). These two complexes could be separated by HPLC [8] and isolated in a pure state as yellow liquids. Catalytic hydrogenation of (--)-XII afforded (+)-XIV (96%, yellow liquid; $[\alpha]_{\mathbf{D}}^{25} = +24.1^{\circ}, c =$ 8 g/l, CHCl₃). Oxidation of (+)-XIV with (NH₄)₂-Ce(NO₃)₆ in acetone gave the uncomplexed diene (-)-XV (90%, colourless oil; $[\alpha]_{\mathbf{D}}^{25} = -37.3^{\circ}, c =$ 8 g/l, CHCl₃).

The absolute configuration of these new compounds was obtained by chemical correlation with the known alcohol (+)-XVI. The absolute configuration of the corresponding parabromobenzoate derivative (+)-(1S,2R)-XVII was established by X-ray crystallography [9]. The *exo* position of the iron atom in (-)-XII was confirmed by direct methylenation of (-)-IX. The *endo* position of the methyl group in (+)-XIV and (-)-XV was established by ¹H NMR spectroscopy [9].

The CD spectra of (-)-X (and (+)-X, prepared from (+)-VIII), (-)-XII (Fig. 1), (-)-XIII (Fig. 2), (+)-XIV and (+)-XVI were measured in isopentane/ methylcyclohexane 3:1 and in methanol/2-methyltetrahydrofurane 1:2. The spectra obtained from these complexes were all temperature dependent, whereas those obtained from the uncomplexed ligands (-)-XI and (-)-XV in the same solvents were temperature *independent* between 77 and 295 K. For (-)-X, (+)-X and (+)-XVI, plots of $\Delta \epsilon_A(T)$ $\nu s. \Delta \epsilon_B(T)$ (A and B represent the maximum and minimum of the dichroic curve, respectively) were

Fig. 2. Variable temperature CD spectra of (-)-tricarbonyl-([C,8,9,C- η]-2,3,5-trimethylidenebicyclo[2.2.1]heptane)iron (exo) (-)-XII in isopentane/methylcyclohexane 3:1, and plot of $\Delta \epsilon_{\mathbf{A}}(T)$ vs. $\Delta \epsilon_{\mathbf{B}}(T)$ ($\lambda_{\mathbf{A}} = 365$; $\lambda_{\mathbf{B}} = 315$ nm) in methanol/2-methyltetrahydrofurane 1:2 (1) and isopentane/ methylcyclohexane 3:1 (2).

not linear. This indicates that solvent effects and/or solute aggregation are partly or totally responsible for the observed temperature-dependent CD spectra. However, for the least polar systems (-)-XII, (-)-XIII and (+)-XIV, linear plots of $\Delta \epsilon_A(T) \nu s$. $\Delta \epsilon_B(T)$ were obtained in both the polar and apolar solvents (see *e.g.* Fig. 1). Furthermore, isodichroic points were observed between 77 and 298 K for these complexes in the two above-mentioned solvents.

The CD results obtained for (-)-XII, (-)-XIII and (+)-XIV are consistent with the existence of equilibria between pairs of rapidly interconverting diastereoisomers. Therefore, they are consistent with either hypothesis A or B. We thus suggest that the σ -alkyl, η^3 -allyl bonding mode is a plausible representation for tricarbonyl(1,3-diene)iron complexes in the gas phase and in solution.

Acknowledgement

We thank the Swiss National Science Foundation for financial support. We are grateful to Prof. B. Testa, Ecole de Pharmacie, Université de Lausanne, for the use of his Roussel-Jouan Dichrograph III (Jobin-Yvon).

References

- A. A. Pinkerton, G. Chapuis, P. Vogel, U. Hänisch, P. Narbel, T. Boschi and R. Roulet, *Inorg. Chim. Acta*, 35, 197 (1979) and references cited therein.
- 2 M. R. Churchill and R. Mason, Adv. Organometal. Chem., 5, 93 (1967);
- R. Eiss, *Inorg. Chem.*, 9, 1651 (1979) and references cited therein;
- P. Diehl, A. C. Kunwar and H. Zimmermann, J. Organometal. Chem., 135, 205 (1977);
- C. Krüger, B. L. Barnett and D. Bramer, 'Structure and Bonding in Organic Iron Compounds', in 'The Organic Chemistry of Iron', Vol. 1, Eds. E. M. Körner von Gustorf, F.-W. Grevels and I. Fischler, Academic Press, New York (1978);
- R. Benn and G. Schroth, J. Organometal. Chem., 228, 71 (1982).
- 3 T. Jenny, Doctoral Dissertation, University of Zürich (1980);
- T. Jenny, W. von Philipsborn, J. Kronenbitter and A. Schwenk, J. Organometal. Chem., 205, 211 (1981).
- 4 H. M. Büch, P. Binger, R. Goddard and C. Krüger, J. Chem. Soc. Chem. Commun., 648 (1983).
- 5 J.-M. Sonney and P. Vogel, Helv. Chim. Acta, 63, 1034 (1980).
- 6 K. Takai, T. Hotta, K. Oshima and H. Nozaki, Tetrahedron Lett., 19, 2417 (1978).
- 7 L. Schwager, Doctoral Dissertation, University of Lausanne (1983);

J. Tamariz, L. Schwager, J. H. A. Stibbard and P. Vogel, *Tetrahedron Lett.*, 24, 1497 (1983).

- 8 C. Barras, Doctoral Dissertation, University of Lausanne (1983), details will be given in a full paper.
- 9 C. Barras, R. Roulet, E. Vieira, P. Vogel and G. Chapuis, Helv. Chim. Acta, 64, 2328 (1981).